Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Altern Lab Anim ; 52(2): 117-131, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38235727

RESUMO

The first Stakeholder Network Meeting of the EU Horizon 2020-funded ONTOX project was held on 13-14 March 2023, in Brussels, Belgium. The discussion centred around identifying specific challenges, barriers and drivers in relation to the implementation of non-animal new approach methodologies (NAMs) and probabilistic risk assessment (PRA), in order to help address the issues and rank them according to their associated level of difficulty. ONTOX aims to advance the assessment of chemical risk to humans, without the use of animal testing, by developing non-animal NAMs and PRA in line with 21st century toxicity testing principles. Stakeholder groups (regulatory authorities, companies, academia, non-governmental organisations) were identified and invited to participate in a meeting and a survey, by which their current position in relation to the implementation of NAMs and PRA was ascertained, as well as specific challenges and drivers highlighted. The survey analysis revealed areas of agreement and disagreement among stakeholders on topics such as capacity building, sustainability, regulatory acceptance, validation of adverse outcome pathways, acceptance of artificial intelligence (AI) in risk assessment, and guaranteeing consumer safety. The stakeholder network meeting resulted in the identification of barriers, drivers and specific challenges that need to be addressed. Breakout groups discussed topics such as hazard versus risk assessment, future reliance on AI and machine learning, regulatory requirements for industry and sustainability of the ONTOX Hub platform. The outputs from these discussions provided insights for overcoming barriers and leveraging drivers for implementing NAMs and PRA. It was concluded that there is a continued need for stakeholder engagement, including the organisation of a 'hackathon' to tackle challenges, to ensure the successful implementation of NAMs and PRA in chemical risk assessment.


Assuntos
Rotas de Resultados Adversos , Inteligência Artificial , Animais , Humanos , Testes de Toxicidade , Medição de Risco , Bélgica
2.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982734

RESUMO

The history of the development of the cell transformation assays (CTAs) is described, providing an overview of in vitro cell transformation from its origin to the new transcriptomic-based CTAs. Application of this knowledge is utilized to address how the different types of CTAs, variously addressing initiation and promotion, can be included on a mechanistic basis within the integrated approach to testing and assessment (IATA) for non-genotoxic carcinogens. Building upon assay assessments targeting the key events in the IATA, we identify how the different CTA models can appropriately fit, following preceding steps in the IATA. The preceding steps are the prescreening transcriptomic approaches, and assessment within the earlier key events of inflammation, immune disruption, mitotic signaling and cell injury. The CTA models address the later key events of (sustained) proliferation and change in morphology leading to tumor formation. The complementary key biomarkers with respect to the precursor key events and respective CTAs are mapped, providing a structured mechanistic approach to represent the complexity of the (non-genotoxic) carcinogenesis process, and specifically their capacity to identify non-genotoxic carcinogenic chemicals in a human relevant IATA.


Assuntos
Carcinógenos , Neoplasias , Humanos , Carcinógenos/toxicidade , Testes de Carcinogenicidade/métodos , Transformação Celular Neoplásica/genética , Carcinogênese/genética
3.
Regul Toxicol Pharmacol ; 137: 105301, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436696

RESUMO

The rodent cancer bioassay has been the standard approach to fulfill regulatory requirements for assessing human carcinogenic potential of agrochemicals, food additives, industrial chemicals, and pharmaceuticals. Decades of research have described the limitations of the rodent cancer bioassay leading to international initiatives to seek alternatives and establish approaches that modernize carcinogenicity assessment. Biologically relevant approaches can provide mechanistic information and increased efficiency for evaluating hazard and risk of chemical carcinogenicity to humans. The application of human-relevant mechanistic understanding to support new approaches to carcinogenicity assessment will be invaluable for regulatory decision-making. The present work outlines the challenges and opportunities that authorities should consider as they come together to build a roadmap that leads to global acceptance and incorporation of fit-for-purpose, scientifically defensible new approaches for human-relevant carcinogenicity assessment of agrochemicals.


Assuntos
Agroquímicos , Carcinógenos , Animais , Humanos , Testes de Carcinogenicidade , Agroquímicos/toxicidade , Carcinógenos/toxicidade , Bioensaio , Roedores , Medição de Risco
4.
Stem Cell Reports ; 16(9): 2076-2077, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525383

RESUMO

The European Commission Joint Research Centre and the European Standardization Organizations CEN and CENELEC organized the "Putting Science into Standards" workshop, focusing on organ-on-chip technologies. The workshop, held online on 28-29 April, 2021, aimed at identifying needs and priorities for standards development and suggesting possible ways forward.


Assuntos
Dispositivos Lab-On-A-Chip/normas , Técnicas de Cultura de Órgãos/normas , Humanos , Técnicas de Cultura de Órgãos/métodos
5.
Mutagenesis ; 36(6): 389-400, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34555171

RESUMO

Scientific, financial, and ethical drivers have led to unprecedented interest in implementing human-relevant, mechanistic in vitro and in silico testing approaches. Further, as non-animal approaches are being developed and validated, researchers are interested in strategies that can immediately reduce the use of animals in toxicology testing. Here, we aim to outline a testing strategy for assessing genotoxicity beginning with standard in vitro methods, such as the bacterial reverse mutation test and the in vitro micronucleus test, followed by a second tier of in vitro assays including those using advanced 3D tissue models. Where regulatory agencies require in vivo testing, one demonstrated strategy is to combine genotoxicity studies traditionally conducted separately into a single test or to integrate genotoxicity studies into other toxicity studies. Standard setting organisations and regulatory agencies have encouraged such strategies, and examples of their use can be found in the scientific literature. Employing approaches outlined here will reduce animal use as well as study time and costs.


Assuntos
Alternativas aos Testes com Animais/métodos , Técnicas In Vitro/métodos , Testes de Mutagenicidade/métodos , Alternativas aos Testes com Animais/ética , Animais , Guias como Assunto , Humanos , Técnicas In Vitro/ética , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/ética
6.
Regul Toxicol Pharmacol ; 125: 105020, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333066

RESUMO

Omics methodologies are widely used in toxicological research to understand modes and mechanisms of toxicity. Increasingly, these methodologies are being applied to questions of regulatory interest such as molecular point-of-departure derivation and chemical grouping/read-across. Despite its value, widespread regulatory acceptance of omics data has not yet occurred. Barriers to the routine application of omics data in regulatory decision making have been: 1) lack of transparency for data processing methods used to convert raw data into an interpretable list of observations; and 2) lack of standardization in reporting to ensure that omics data, associated metadata and the methodologies used to generate results are available for review by stakeholders, including regulators. Thus, in 2017, the Organisation for Economic Co-operation and Development (OECD) Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) launched a project to develop guidance for the reporting of omics data aimed at fostering further regulatory use. Here, we report on the ongoing development of the first formal reporting framework describing the processing and analysis of both transcriptomic and metabolomic data for regulatory toxicology. We introduce the modular structure, content, harmonization and strategy for trialling this reporting framework prior to its publication by the OECD.


Assuntos
Metabolômica/normas , Organização para a Cooperação e Desenvolvimento Econômico/normas , Toxicogenética/normas , Toxicologia/normas , Transcriptoma/fisiologia , Documentação/normas , Humanos
7.
Lab Chip ; 21(15): 2857-2868, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34251386

RESUMO

Organ on chip (OoC) devices represent the cutting edge of biotechnologies, combining advanced cell and tissue culture with microengineering. OoC is accelerating innovation in the life sciences and has the potential to revolutionise many fields including biomedical research, drug development and chemical risk assessment. In order to gain acceptance by end-users of OoC based methods and the data derived from them, and to establish OoC approaches as credible alternatives to animal testing, OoC devices need to go through an extensive qualification process. In this context, standardisation can play a key role in ensuring proper characterisation of individual devices, benchmarking against appropriate reference elements and aiding efficient communication among stakeholders. The development of standards for OoC will address several important issues such as basic terminology, device classification, and technical and biological performance. An analysis of technical and biological aspects related to OoC is presented here to identify standardisation areas specific for OoC, focusing on needs and opportunities. About 90 standards are already available from related fields including microtechnologies, medical devices and in vitro cell culture, laying the basis for future work in the OoC domain. Finally, two priority areas for OoC are identified that could be addressed with standards, namely, characterisation of small molecule absorption and measurement of microfluidic parameters.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Animais , Técnicas de Cultura de Células , Análise de Sequência com Séries de Oligonucleotídeos
8.
Arch Toxicol ; 95(6): 1971-1993, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33830278

RESUMO

In view of the need to enhance the assessment of consumer products called for in the EU Chemicals Strategy for Sustainability, we developed a methodology for evaluating hazard by combining information across different systemic toxicity endpoints and integrating the information with new approach methodologies. This integrates mechanistic information with a view to avoiding redundant in vivo studies, minimising reliance on apical endpoint tests and ultimately devising efficient testing strategies. Here, we present the application of our methodology to carcinogenicity assessment, mapping the available information from toxicity test methods across endpoints to the key characteristics of carcinogens. Test methods are deconstructed to allow the information they provide to be organised in a systematic way, enabling the description of the toxicity mechanisms leading to the adverse outcome. This integrated approach provides a flexible and resource-efficient means of fully exploiting test methods for which test guidelines are available to fulfil regulatory requirements for systemic toxicity assessment as well as identifying where new methods can be integrated.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Medição de Risco/métodos , Testes de Toxicidade/métodos , Animais , Determinação de Ponto Final , União Europeia , Humanos
9.
Arch Toxicol ; 95(6): 1867-1897, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33851225

RESUMO

The EU Directive 2010/63/EU   on the protection of animals used for scientific purposes and other EU regulations, such as REACH and the Cosmetic Products Regulation advocate for a change in the way toxicity testing is conducted. Whilst the Cosmetic Products Regulation bans animal testing altogether, REACH aims for a progressive shift from in vivo testing towards quantitative in vitro and computational approaches. Several endpoints can already be addressed using non-animal approaches including skin corrosion and irritation, serious eye damage and irritation, skin sensitisation, and mutagenicity and genotoxicity. However, for systemic effects such as acute toxicity, repeated dose toxicity and reproductive and developmental toxicity, evaluation of chemicals under REACH still heavily relies on animal tests. Here we summarise current EU regulatory requirements for the human health assessment of chemicals under REACH and the Cosmetic Products Regulation, considering the more critical endpoints and identifying the main challenges in introducing alternative methods into regulatory testing practice. This supports a recent initiative taken by the International Cooperation on Alternative Test Methods (ICATM) to summarise current regulatory requirements specific for the assessment of chemicals and cosmetic products for several human health-related endpoints, with the aim of comparing different jurisdictions and coordinating the promotion and ultimately the implementation of non-animal approaches worldwide. Recent initiatives undertaken at European level to promote the 3Rs and the use of alternative methods in current regulatory practice are also discussed.


Assuntos
Alternativas aos Testes com Animais/legislação & jurisprudência , Cosméticos/legislação & jurisprudência , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais/métodos , Animais , Cosméticos/toxicidade , União Europeia , Humanos , Cooperação Internacional , Medição de Risco/legislação & jurisprudência , Medição de Risco/métodos
10.
Crit Rev Toxicol ; 50(9): 725-739, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33236972

RESUMO

Chemical substances are subjected to assessment of genotoxic and carcinogenic effects before being marketed to protect man and the environment from health risks. For agrochemicals, the long-term rodent carcinogenicity study is currently required from a regulatory perspective. Although it is the current mainstay for the detection of nongenotoxic carcinogens, carcinogenicity studies are shown to have prominent weaknesses and are subject to ethical and scientific debate. A transition toward a mechanism-based weight-of-evidence approach is considered a requirement to enhance the prediction of carcinogenic potential for environmental (agro)chemicals. The resulting approach should make optimal use of innovative (computational) tools and be less animal demanding. To identify the various mode of actions (MOAs) underlying the nongenotoxic carcinogenic potential of agrochemicals, we conducted an extensive analysis of 411 unique agrochemicals that have been evaluated for carcinogenicity by the United States Environmental Protection Agency (US EPA) and the European Chemicals Agency (ECHA). About one-third of these substances could be categorized as nongenotoxic carcinogens with an average of approximately two tumor types per substance, observed in a variety of organs. For two-third of the tumor cases, an underlying MOA (network) could be identified. This analysis demonstrates that a limited set of MOA (networks) is underlying nongenotoxic carcinogenicity of agrochemicals, illustrating that the transition toward a MOA-driven approach appears manageable. Ultimately the approach should cover relevant MOAs and its associated key events; this will also facilitate the evaluation of the human relevance. This manuscript describes the results of the analysis while identifying knowledge gaps and necessities to achieve a mechanism-based weight-of-evidence approach.


Assuntos
Agroquímicos/toxicidade , Carcinógenos/toxicidade , Animais , Carcinogênese , Testes de Carcinogenicidade , Dano ao DNA , Humanos , Neoplasias , Medição de Risco , Estados Unidos , United States Environmental Protection Agency
12.
Regul Toxicol Pharmacol ; 118: 104789, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33035627

RESUMO

Currently the only methods for non-genotoxic carcinogenic hazard assessment accepted by most regulatory authorities are lifetime carcinogenicity studies. However, these involve the use of large numbers of animals and the relevance of their predictive power and results has been scientifically challenged. With increased availability of innovative test methods and enhanced understanding of carcinogenic processes, it is believed that tumour formation can now be better predicted using mechanistic information. A workshop organised by the European Partnership on Alternative Approaches to Animal Testing brought together experts to discuss an alternative, mechanism-based approach for cancer risk assessment of agrochemicals. Data from a toolbox of test methods for detecting modes of action (MOAs) underlying non-genotoxic carcinogenicity are combined with information from subchronic toxicity studies in a weight-of-evidence approach to identify carcinogenic potential of a test substance. The workshop included interactive sessions to discuss the approach using case studies. These showed that fine-tuning is needed, to build confidence in the proposed approach, to ensure scientific correctness, and to address different regulatory needs. This novel approach was considered realistic, and its regulatory acceptance and implementation can be facilitated in the coming years through continued dialogue between all stakeholders and building confidence in alternative approaches.


Assuntos
Agroquímicos/efeitos adversos , Alternativas aos Testes com Animais , Testes de Carcinogenicidade , Transformação Celular Neoplásica/induzido quimicamente , Neoplasias/induzido quimicamente , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Congressos como Assunto , Humanos , Testes de Mutagenicidade , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Medição de Risco , Testes de Toxicidade Subcrônica , Toxicocinética
13.
ALTEX ; 37(4): 519-531, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32735683

RESUMO

To develop and evaluate scientifically robust and innovative approaches for the safety assessment of chemicals across multiple regulatory sectors, the EU Reference Laboratory for alternatives to animal testing (EURL ECVAM) has started a project to explore how to better use the available information, including that from existing animal studies. The aim is to minimize reliance on in vivo testing to avoid redundancy and to facilitate the integration of novel non-animal methods in the regulatory setting with the ultimate goal of designing sustainable testing strategies. In this thought-starter paper, we present a number of examples to illustrate and trigger further discussions within the scientific and regulatory communities on ways to extrapolate useful information for predicting toxicity from one toxicity endpoint to another or across endpoints based on mechanistic information.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32660827

RESUMO

The bacterial reverse mutation test (Ames test) is the most commonly used genotoxicity test; it is a primary component of the chemical safety assessment data required by regulatory agencies worldwide. Within the current accepted in vitro genotoxicity test battery, it is considered capable of revealing DNA reactivity, and identifying substances that can produce gene mutations via different mechanisms. The previously published consolidated EURL ECVAM Genotoxicity and Carcinogenicity Database, which includes substances that elicited a positive response in the Ames test, constitutes a collection of data that serves as a reference for a number of regulatory activities in the area of genotoxicity testing. Consequently, we considered it important to expand the database to include substances that fail to elicit a positive response in the Ames test, i.e., Ames negative substances. Here, we describe a curated collection of 211 Ames negative substances, with a summary of complementary data available for other genotoxicity endpoints in vitro and in vivo, plus available carcinogenicity data. A descriptive analysis of the data is presented. This includes a representation of the chemical space formed by the Ames-negative database with respect to other substances (e.g. REACH registered substances, approved drugs, pesticides, etc.) and a description of the organic functional groups found in the database. We also provide some suggestions on further analyses that could be made.


Assuntos
Testes de Carcinogenicidade/normas , Carcinógenos/toxicidade , Bases de Dados Factuais/normas , Testes de Mutagenicidade/normas , Mutagênicos/toxicidade , Resultados Negativos/normas , Animais , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Gerenciamento de Dados/normas , Humanos
15.
Arch Toxicol ; 94(8): 2899-2923, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32594184

RESUMO

While regulatory requirements for carcinogenicity testing of chemicals vary according to product sector and regulatory jurisdiction, the standard approach starts with a battery of genotoxicity tests (which include mutagenicity assays). If any of the in vivo genotoxicity tests are positive, a lifetime rodent cancer bioassay may be requested, but under most chemical regulations (except plant protection, biocides, pharmaceuticals), this is rare. The decision to conduct further testing based on genotoxicity test outcomes creates a regulatory gap for the identification of non-genotoxic carcinogens (NGTxC). With the objective of addressing this gap, in 2016, the Organization of Economic Cooperation and Development (OECD) established an expert group to develop an integrated approach to the testing and assessment (IATA) of NGTxC. Through that work, a definition of NGTxC in a regulatory context was agreed. Using the adverse outcome pathway (AOP) concept, various cancer models were developed, and overarching mechanisms and modes of action were identified. After further refining and structuring with respect to the common hallmarks of cancer and knowing that NGTxC act through a large variety of specific mechanisms, with cell proliferation commonly being a unifying element, it became evident that a panel of tests covering multiple biological traits will be needed to populate the IATA. Consequently, in addition to literature and database investigation, the OECD opened a call for relevant assays in 2018 to receive suggestions. Here, we report on the definition of NGTxC, on the development of the overarching NGTxC IATA, and on the development of ranking parameters to evaluate the assays. Ultimately the intent is to select the best scoring assays for integration in an NGTxC IATA to better identify carcinogens and reduce public health hazards.


Assuntos
Testes de Carcinogenicidade/normas , Carcinógenos/toxicidade , Animais , Consenso , Humanos , Reprodutibilidade dos Testes , Medição de Risco
16.
Artigo em Inglês | MEDLINE | ID: mdl-32247552

RESUMO

Use of three-dimensional (3D) tissue equivalents in toxicology has been increasing over the last decade as novel preclinical test systems and as alternatives to animal testing. In the area of genetic toxicology, progress has been made with establishing robust protocols for skin, airway (lung) and liver tissue equivalents. In light of these advancements, a "Use of 3D Tissues in Genotoxicity Testing" working group (WG) met at the 7th IWGT meeting in Tokyo in November 2017 to discuss progress with these models and how they may fit into a genotoxicity testing strategy. The workshop demonstrated that skin models have reached an advanced state of validation following over 10 years of development, while liver and airway model-based genotoxicity assays show promise but are at an early stage of development. Further effort in liver and airway model-based assays is needed to address the lack of coverage of the three main endpoints of genotoxicity (mutagenicity, clastogenicity and aneugenicity), and information on metabolic competence. The IWGT WG believes that the 3D skin comet and micronucleus assays are now sufficiently validated to undergo an independent peer review of the validation study, followed by development of individual OECD Test Guidelines.


Assuntos
Dano ao DNA/efeitos dos fármacos , Metagenômica/tendências , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Dano ao DNA/genética , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Testes para Micronúcleos
17.
Environ Int ; 128: 417-429, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31078876

RESUMO

Cancer is a key public health concern, being the second leading cause of worldwide morbidity and mortality after cardiovascular diseases. At the global level, cancer prevalence, incidence and mortality rates are increasing. These trends are not fully explained by a growing and ageing population: with marked regional and socioeconomic disparities, lifestyle factors, the resources dedicated to preventive medicine, and the occupational and environmental control of hazardous chemicals all playing a role. While it is difficult to establish the contribution of chemical exposure to the societal burden of cancer, a number of measures can be taken to better assess the carcinogenic properties of chemicals and manage their risks. This paper discusses how these measures can be informed not only by the traditional data streams of regulatory toxicology, but also by using new toxicological assessment methods, along with indicators of public health status based on biomonitoring. These diverse evidence streams have the potential to form the basis of an integrated and more effective approach to cancer prevention.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Substâncias Perigosas/efeitos adversos , Saúde Pública/métodos , Animais , Carcinogênese/induzido quimicamente , Humanos , Camundongos , Ratos
18.
ALTEX ; 36(2): 289-313, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30570669

RESUMO

Investigative Toxicology describes the de-risking and mechanistic elucidation of toxicities, supporting early safety decisions in the pharmaceutical industry. Recently, Investigative Toxicology has contributed to a shift in pharmaceutical toxicology, from a descriptive to an evidence-based, mechanistic discipline. This was triggered by high costs and low throughput of Good Laboratory Practice in vivo studies, and increasing demands for adhering to the 3R (Replacement, Reduction and Refinement) principles of animal welfare. Outside the boundaries of regulatory toxicology, Investigative Toxicology has the flexibility to embrace new technologies, enhancing translational steps from in silico, in vitro to in vivo mechanistic understanding to eventually predict human response. One major goal of Investigative Toxicology is improving preclinical decisions, which coincides with the concept of animal-free safety testing. Currently, compounds under preclinical development are being discarded due to the use of inappropriate animal models. Progress in Investigative Toxicology could lead to humanized in vitro test systems and the development of medicines less reliant on animal tests. To advance this field a group of 14 European-based leaders from the pharmaceutical industry founded the Investigative Toxicology Leaders Forum (ITLF), an open, non-exclusive and pre-competitive group that shares knowledge and experience. The ITLF collaborated with the Centre for Alternatives to Animal Testing Europe (CAAT-Europe) to organize an "Investigative Toxicology Think-Tank", which aimed to enhance the interaction with experts from academia and regulatory bodies in the field. Summarizing the topics and discussion of the workshop, this article highlights Investigative Toxicology's position by identifying key challenges and perspectives.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/tendências , Toxicologia/tendências , Alternativas aos Testes com Animais , Animais , Simulação por Computador , Indústria Farmacêutica , Europa (Continente) , Humanos , Técnicas In Vitro , Medição de Risco
19.
Regul Toxicol Pharmacol ; 99: 33-49, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30098372

RESUMO

EU regulations call for the use of alternative methods to animal testing. During the last decade, an increasing number of alternative approaches have been formally adopted. In parallel, new 3Rs-relevant technologies and mechanistic approaches have increasingly contributed to hazard identification and risk assessment evolution. In this changing landscape, an EPAA meeting reviewed the challenges that different industry sectors face in the implementation of alternative methods following a science-driven approach. Although clear progress was acknowledged in animal testing reduction and refinement thanks to an integration of scientifically robust approaches, the following challenges were identified: i) further characterization of toxicity pathways; ii) development of assays covering current scientific gaps, iii) better characterization of links between in vitro readouts and outcome in the target species; iv) better definition of alternative method applicability domains, and v) appropriate implementation of the available approaches. For areas having regulatory adopted alternative methods (e.g., vaccine batch testing), harmonised acceptance across geographical regions was considered critical for broader application. Overall, the main constraints to the application of non-animal alternatives are the still existing gaps in scientific knowledge and technological limitations. The science-driven identification of most appropriate methods is key for furthering a multi-sectorial decrease in animal testing.


Assuntos
Alternativas aos Testes com Animais/legislação & jurisprudência , Indústrias/legislação & jurisprudência , Animais , Europa (Continente) , Humanos , Medição de Risco/legislação & jurisprudência , Testes de Toxicidade/normas
20.
ALTEX ; 35(2): 139-162, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29677694

RESUMO

A biological system is more than the sum of its parts - it accomplishes many functions via synergy. Deconstructing the system down to the molecular mechanism level necessitates the complement of reconstructing functions on all levels, i.e., in our conceptualization of biology and its perturbations, our experimental models and computer modelling. Toxicology contains the somewhat arbitrary subclass "systemic toxicities"; however, there is no relevant toxic insult or general disease that is not systemic. At least inflammation and repair are involved that require coordinated signaling mechanisms across the organism. However, the more body components involved, the greater the challenge to reca-pitulate such toxicities using non-animal models. Here, the shortcomings of current systemic testing and the development of alternative approaches are summarized. We argue that we need a systematic approach to integrating existing knowledge as exemplified by systematic reviews and other evidence-based approaches. Such knowledge can guide us in modelling these systems using bioengineering and virtual computer models, i.e., via systems biology or systems toxicology approaches. Experimental multi-organ-on-chip and microphysiological systems (MPS) provide a more physiological view of the organism, facilitating more comprehensive coverage of systemic toxicities, i.e., the perturbation on organism level, without using substitute organisms (animals). The next challenge is to establish disease models, i.e., micropathophysiological systems (MPPS), to expand their utility to encompass biomedicine. Combining computational and experimental systems approaches and the chal-lenges of validating them are discussed. The suggested 3S approach promises to leverage 21st century technology and systematic thinking to achieve a paradigm change in studying systemic effects.


Assuntos
Simulação por Computador , Biologia de Sistemas/tendências , Toxicologia/tendências , Alternativas aos Testes com Animais , Animais , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...